Development of serum-free, chemically defined conditions for human embryonic stem cell-derived fibrochondrogenesis.
نویسندگان
چکیده
This study established serum-free, chemically defined conditions to generate fibrocartilage with human embryonic stem cells (hESCs). Three sequential experimental phases were performed to eliminate serum because of its variability and antigenic potential and characterize the performance of hESCs in serum-free and serum-based conditions. Each phase used a two-stage modular experiment: chondrogenic differentiation followed by scaffold-less tissue engineering, called self-assembly. Phase I studied serum effects, and showed that a 1% serum chondrogenic medium (CM) during differentiation resulted in uniform constructs, whereas a 20% serum CM did not. Furthermore, a no-serum CM during self-assembly led to a collagen content 50% to 200% greater than a 1% serum CM. Thus, a "serum standard" of 1% serum during differentiation and no serum during self-assembly was carried forward. Phase II compared this with serum-free formulations, using 5% knock-out serum replacer or 1-ng/mL transforming growth factor beta 1 (TGF-beta1). The TGF-beta1 group was chosen as a "serum-free standard" because it performed similarly to the serum standard in terms of morphological, biochemical, and biomechanical properties. In Phase III, the serum-free standard had significantly more collagen (100%) and greater tensile ( approximately 150%) and compressive properties ( approximately 80%) than the serum standard with TGF-beta1 treatment during self-assembly. These advances are important to the understanding of mechanisms of chondrogenesis and creating clinically relevant stem cell therapies.
منابع مشابه
Large-Scale Expansion of Human Embryonic and Induced Pluripotent Stem Cells for Cell Therapy Applications
Successful isolation, derivation and culturing of human pluripotent stem cells, including human embryonic stem cells (hESCs) and human induced pluripotent stem (hiPSCs) cells in laboratory scale has opened new horizones for cell therapy applications such as tissue engineering and regenerative medicine. However, most of the cell therapy protocols using these unique cells require large number of ...
متن کاملComparison of BAX and Bcl-2 Expression During Human Embryonic Stem Cell Differentiation into Cardiomyocytes and Doxorubicin-induced Apoptosis
Back ground: Although the cell differentiation is an inseparable part of development in multicellular organisms, the regulating molecular pathway of it still is not fully defined. In the other hand, apoptosis is a fundamental physiological process which plays an essential role in a variety of biological events during development. Moreover, recent studies have found that apoptosis shows several ...
متن کاملReprogramming by cytosolic extract of human embryonic stem cells improves dopaminergic differentiation potential of human adipose tissue-derived stem cells
The extract of pluripotent stem cells induces dedifferentiation of somatic cells with restricted plasticity. In this study, we used the extract of human embryonic stem cells (hESC) to dedifferentiate adipose tissue-derived stem cells (ADSCs) and examined the impact of this reprogramming event on dopaminergic differentiation of the cells. For this purpose, cytoplasmic extract of ESCs was prepare...
متن کاملReview Paper: Embryonic Stem Cell and Osteogenic Differentiation
Bone tissue engineering has been one of the most promising areas of research, providing a potential clinical application to cure bone defects. Recently, various stem cells, including embryonic stem cells (ESCs), bone marrow-derived mesenchymal stem cells (BM-MSCs), umbilical cord blood-derived mesenchymal stem cells (UCB-MSCs), adipose tissue-derived stem cells (ADSCs), muscle-derived stem cell...
متن کاملDevelopment of humanized culture medium with plant-derived serum replacement for human pluripotent stem cells.
For human embryonic stem cells (ESC) to be used in cell replacement therapies, they must be grown under good manufacturing conditions in a chemically defined medium that lacks animal proteins. This study examined the ability of a newly designed medium containing the plant-derived serum replacement VegetaCell and other reagents of human origin to support undifferentiated growth and pluripotency ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Tissue engineering. Part A
دوره 15 8 شماره
صفحات -
تاریخ انتشار 2009